Thinking Recursively

Part 1

Outline for Today

* Self-Similarity

 Recursive patterns are everywhere!
* Recursive Trees

* Elegant structures from simple code.
 Information Flow

« How to send information around in
recursion.

Self-Similarity

An object is self-similar if it contains a smaller copy of itself.

An object is self-similar if it contains a smaller copy of itself.

Drawing Self-Similar Shapes

What differentiates the smaller
tree from the bigger one?

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different size.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
3. It has a different orientation.

2. It’s at a different size.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.

2. It’s at a different size.

3. It has a different orientation.
4. It has a different order.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.

2. It’s at a different size.

3. It has a different orientation.
4. It has a different order.

Self-similar structures are

often described in terms of

some parameter called the
order.

An order-0 tree.

What differentiates the smaller
tree from the bigger one?

) . . Self-similar structures are
1. It’s at a different position. : :
2 It’s at a different size. often described in terms of

3. It has a different orientation. some parameter called the
4. 1t has a different order. order.

An order-1 tree.

What differentiates the smaller
tree from the bigger one?

) . . Self-similar structures are
1. It’s at a different position. : :
2 It’s at a different size. often described in terms of

3. It has a different orientation. some parameter called the
4. 1t has a different order. order.

What differentiates the smaller
tree from the bigger one?

An order-2 tree.

1. It’s at a different position.

2. It’s at a different size.

3. It has a different orientation.
4. It has a different order.

Self-similar structures are

often described in terms of

some parameter called the
order.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.

2. It’s at a different size.

3. It has a different orientation.
4. It has a different order.

An order-3 tree.

Self-similar structures are

often described in terms of

some parameter called the
order.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.

2. It’s at a different size.

3. It has a different orientation.
4. It has a different order.

An order-4 tree.

Self-similar structures are

often described in terms of

some parameter called the
order.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.

2. It’s at a different size.

3. It has a different orientation.
4. It has a different order.

Self-similar structures are

often described in terms of

some parameter called the
order.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.

2. It’s at a different size.

3. It has a different orientation.
4. It has a different order.

An order-3 tree.

Self-similar structures are

often described in terms of

some parameter called the
order.

An order-0 tree is nothing at all.

An order-n tree is a line with two
smaller order-(n-1) trees starting
at the end of that line.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.

2. It’s at a different size.

3. It has a different orientation.
4. It has a different order.

An order-3 tree.

Self-similar structures are

often described in terms of

some parameter called the
order.

An order-3 tree.
An order-0 tree is nothing at all.

An order-n tree is a line with two
smaller order-(n-1) trees starting
at the end of that line.

4)
L WK 4 o™ -
[] Y l' LY " '
LTS 1 U . 1
L !
[] \ \ Y , 1 7
A
. ’ [
-
'O -\' q
! /—-.‘
‘~___¢ r ,‘
\~ P

What differentiates the smaller
tree from the bigger one?

Self-similar structures are

often described in terms of

some parameter called the
order.

1. It’s at a different position.

2. It’s at a different size.

3. It has a different orientation.
4. It has a different order.

To Summarize

We drew this
tree recursively

Each recursive call just

draws one branch. The

sum total of all the

recursive calls draws

the whole tree.

An Amazing Website

http://recursivedrawing.com/

http://recursivedrawing.com/

Time-Out for Announcements!

Assignment 2

» Assignment 2 is due on Friday.

 If you're following our suggested timetable, you
should aim to wrap up Rosetta Stone tonight and
start working on Rising Tides.

« Have questions?
Visit into the LalR!
Email your section leader!

Ask on EdStem!
Visit Keith’s or Neel’s office hours!

Submitting Your Work

 Each assignment has a “Submission
Instructions” section at the end with
information about what files to submit.

 Please submit all the files listed
there. Otherwise, we can’t grade all the
work you’ve done.

e Thanks!

Onward and Forward!

A Quick, Relevant Tangent

Reasoning By Analogy

 What’s wrong with this code?
const double PI = 3.14159265358979;

double areaOfCircle(double radius) {
return PI * radius * radius;
}

int main() {
double radius = 1.61;
areaOfCircle(radius);

return 0;

Answer online at
https://pollev.com/cs106bwin23

https://pollev.com/cs106bwin23

Reasoning By Analogy

 What’s wrong with this code?
const double PI = 3.14159265358979;

double areaOfCircle(double radius) {
return PI * radius * radius;
}

int main() {
double radius = 1.61;
areaOfCircle(radius);

return 0;

Reasoning By Analogy

areaOfCircle(radius);

It’s odd to call a function
that returns a value
and then not use that value.

If you don’t use a function’s
return value, it’s likely a bug!

Back to Recursion...

A Practical Application

http://www.pbs.org/wgbh/nova/physics/hunting-hidden-dimension.html

How many lines make up each tree?

How many
lines are in
this tree?

We use one line for
the trunk

.. Some number of
lines to draw this

tree, ...

BN EN B O g
¥ 3 g

.. and some

number of lines to
draw this tree.

._-"l:.l-._ -l:_----------------------------------

int drawTree(/* .. */) {
if (order == 0) {
return 0;
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

drawTree(/* .. */);
drawTree(/* .. */);

return numLines;

FYoX | Trees!

int numLines
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

drawTree(/* .
drawTree(/* .

:0;

- *[);
- *[);

return numLines;

0O @

Trees!

int drawTree(/* .. */) {
if (order == 0) {
return 0;
}

int numLines = 0;
: =/ drawPolarLine(/* .. */);

numLines++;

drawTree(/* .. */);
drawTree(/* .. */);

return numLines;

FYoX | Trees!

int drawTree(/* .. */) { 0
if (order == 0) {
return 0; numLines

}

int numLines = 0;
: =/ drawPolarLine(/* .. */);

numLines++;

drawTree(/* .. */);
drawTree(/* .. */);

return numLines;

Yo Trees!

int drawTree(/* .. */) { 0]
if (order == 0) {
return 0; numLines

}

lGPoint endpoint = drawPolarLine(/* .. */)J

TUMC CITeS T T,

drawTree(/* .. */);
drawTree(/* .. */);

return numLines;

FYoX | Trees!

int drawTree(/* .. */) { 0]
if (order == 0) {
return 0; numLines

}

lGPoint endpoint = drawPolarLine(/* .. */)J

TUMC CITeS T T,

drawTree(/* .. */);
drawTree(/* .. */);

return numLines;

FYoX | Trees!

int drawTree(/* .. */) { 0]
if (order == 0) {
return 0; numLines

}

int numLines = 0;

int = drawPolarLine(/* .. */);
numLines++;

drawTree(/* .. */);
drawTree(/* .. */);

return numLines;

' Yor Trees!)

int drawTree(/* .. */) { 1
if (order == 0) {
return 0; numLines

}

int numLines = 0;

int = drawPolarLine(/* .. */);
numLines++;

drawTree(/* .. */);
drawTree(/* .. */);

return numLines;

' Yor Trees!)

int drawTree(/* .. */) { 1
if (order == 0) {
return 0; numLines
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

drawTree(/* .. */);

(XYY]

return numLines;

Yor Trees!)

'.l.'* de T caal i O AN o i |

int drawTree(/* .. */) {
if (order == 0) {
return 0;
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

drawTree(/* .. */);
drawTree(/* .. */);

return numLines;

Yor Trees!)

'.l.'* de T caal i O AN o i |

in =
if (order == 0) {

}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

drawTree(/* .. */);
drawTree(/* .. */);

return numLines;

FYoX | Trees!

gl Teaol ls N[4

int drawTree(/* .. */) {
if (order == 0) {
return 0;
}

int numLines = 0;

rawPolarLine(/* .. */);
numLines++;

drawTree(/* .. */);
drawTree(/* .. */);

return numLines;

' Yor Trees!)

iﬂ—dﬁu&ﬁﬁn&kﬁ‘—i’\ L 4

int drawTree(/* .. */) { 0]
if (order == 0) {
return 0; numLines
}

int numLines = 0;
' ! rawPolarLine(/* .. */);
numLines++;

drawTree(/* .. */);
drawTree(/* .. */);

return numLines;

FYoK) Trees!)

iﬂ—dﬁu&ﬁﬁn&kﬁ‘—i’\ L |

int drawTree(/* .. */) { 0]
if (order == 0) {
return 0; numLines
}
l int numLines = 0; I«
' ! rawPolarLine(/* .-

numLines++;

drawTree(/* .. */);
drawTree(/* .. */);

return numLines;
1}— It’s reasonable to guess that this

line is the problem because it
looks like it resets numLines to
zero at each call.

CYOX | Trees!

But that’s not actually the issue.
Remember - every recursive call
gets its own copies of all local
variables.

P RS PRV PP O A T N A o 4

int drawTree(/* .. */) { 0]
if (order == 0) {
return 0; numLines
}

l GPoint endpoint = drawPolarLine(/* .. */)J

drawTree(/* .. */);
drawTree(/* .. */);

return numLines;

FYoX | Trees!

P RS PRV PP O A T N A o 4

int drawTree(/* .. */) { 0]
if (order == 0) {
return 0; numLines
}

l GPoint endpoint = drawPolarLine(/* .. */)J

drawTree(/* .. */);
drawTree(/* .. */);

return numLines;

FYoX | Trees!

i Teool lx AN & 4

int drawTree(/* .. */) { 0]
if (order == 0) {
return 0; numLines
}

int numLines = 0;

int = drawPolarLine(/* .. */);
numLines++;

drawTree(/* .. */);
drawTree(/* .. */);

return numLines;

Yo Trees!)

i Teool lx AN & 4

int drawTree(/* .. */) { 1
if (order == 0) {
return 0; numLines
}

int numLines = 0;

int = drawPolarLine(/* .. */);
numLines++;

drawTree(/* .. */);
drawTree(/* .. */);

return numLines;

Yo Trees!)

}

if (order

}

MI\ L

int drawTree(/* .. */) {

== 0) {

return 0;

int numLines = 0;

int = drawPolarLine(/* .. */);
numLines++;

1

numLines

drawTree(/* .. */);
drawTree(/* .. */);

return numLines;
-1.}— It’s also reasonable to guess that the

00

Trees!

error is that this isn’t incrementing the
copy of numLines inside of the top-level
call.

While it’s true that this doesn’t increment
the top-level copy of numLines, that isn’t an
error per se. This function says it will
return the number of lines drawn, not

update a global total somewhere.

'.l.'* de T caal i O AN o i |

int drawTree(/* .. */) { 1
if (order == 0) {
return 0; numLines
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

drawTree(/* .. */);

(XYY]

return numLines;

"Yor Trees!)

'.l.'* de T ool I O AN o i |

int drawTree(/* .. */) { 1
if (order == 0) {
return 0; numLines
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

drawTree(/* .. */);

(XYY]

return numLines;

FYoX | Trees!

PV TN PPN O A C A

if (order == 0) {
return 0;
}

int numLines = 0;

numLines++;

int drawTree(/* .. */) {

GPoint endpoint = drawPolarLine(/* .. */);

return numLines;

drawTree(/* .. */);

3

numLines

' YoX) Trees!

This function returns an integer, but we
didn’t do anything with that integer! It
would be like writing this line of code:

sqrt(137);

This computes a square root, but doesn’t
store it anywhere. Oops! Our total is now
wrong.

'.l.'* de T ool I O AN o i |

int drawTree(/* .. */) { 1
if (order == 0) {
return 0; numLines
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

drawTree(/* .. */);

(XYY]

return numLines;

FYoX | Trees!

'.l.'* de T ool I O AN o i |

int drawTree(/* .. */) { 1
if (order == 0) {
return 0; numLines
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

|drawTree(/* : */);l

return numLines;

FYoX | Trees!

'.l.'* de T ool I O AN o i |

int drawTree(/* .. */) { 1
if (order == 0) {
return 0; numLines
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

|drawTree(/* : */);l

return numLines;

FYoX | Trees!

! gl e T ool L C A

int drawTree(/* .. */) {
if (order == 0) {
return 0;
}

int numLines = 0;

numLines++;

GPoint endpoint = drawPolarLine(/* .. */);

|drawTree(/* : */);l<—

return numLines;

FYoX | Trees!

numLines

Oops - we didn’t do
anything with the
return value.

ke e T oo/l i O AN o i |

int drawTree(/* .. */) { 1
if (order == 0) {
return 0; numLines
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

drawTree(/* .. */);
drawTree(/* .. */);

[return numLines;]

}

FYoX | Trees!

int drawTree(/* .. */) { 1
if (order == 0) {
return 0; numLines
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

drawTree(/* .. */);

(XYY]

return numLines;

FYoX | Trees!

int drawTree(/* .. */) { 1
if (order == 0) {
return 0O; numLines

}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

drawTree(/* .. */); |€—

ooe F)

return numLines;

Oops - we didn’t do
"Yox | Trees! anything with the
return value.

int drawTree(/* .. */) { 1
if (order == 0) {
return 0; numLines
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

|drawTree(/* : */);

return numLines;

FYoX | Trees!

int drawTree(/* .. */) { 1
if (order == 0) {
return 0; numLines
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

|drawTree(/* : */);

return numLines;

FYoX | Trees!

if (order ==
return 0
}

int numLines

numLines++;

int drawTree(/* .. */) {

0) {

]
3

:0;

GPoint endpoint = drawPolarLine(/* .. */);

|drawTree(/* : */);

numLines

return numLines;

0O @

Trees!

Oops - we didn’t do
anything with the
return value.

int drawTree(/* .. */) { 1
if (order == 0) {
return 0; numLines

}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

drawTree(/* .. */);
drawTree(/* .. */);

[return numLines;]

}

FYoX | Trees!

General Advice

 If a function returns a value, you should,
in general, do something with that value.

 Otherwise, the function did all this hard work
for you, and you just dropped it on the floor!

» If you're writing a recursive function that
returns a value, you should explicitly do
something with the value returned by
each recursive call.

* Otherwise, your recursive call is trying to tell
you something, and you’'re ignoring it!

The Correction

int drawTree(/* .. */) {
if (order == 0) {
return 0;
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

numLines += drawTree(/* .. */);
numLines += drawTree(/* .. */);

return numLines;

FYoX | Trees!

int -
if (order == 0) {

}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

numLines += drawTree(/* .. */);
numLines += drawTree(/* .. */);

return numLines;

' YoX) Trees!

int drawTree(/* .. */) {
if (order == 0) {
return 0;
}

int numLines = 0;

rawPolarLine(/* .. */);
numLines++;

numLines += drawTree(/* .. */);
numLines += drawTree(/* .. */);

return numLines;

FYoX | Trees!

int drawTree(/* .. */) { 0]
if (order == 0) {
return 0; numLines
}

int numLines = 0;

rawPolarLine(/* .. */);
numLines++;

numLines += drawTree(/* .. */);
numLines += drawTree(/* .. */);

return numLines;

FYoX | Trees!

int drawTree(/* .. */) { 0]
if (order == 0) {
return 0; numLines
}

lGPoint endpoint = drawPolarLine(/* .. */)J

TUMC CITeS T T,

numLines += drawTree(/* .. */);
numLines += drawTree(/* .. */);

return numLines;

' YoX) Trees!

int drawTree(/* .. */) { 0]
if (order == 0) {
return 0; numLines
}

lGPoint endpoint = drawPolarLine(/* .. */)J

TUMC CITeS T T,

numLines += drawTree(/* .. */);
numLines += drawTree(/* .. */);

return numLines;

' YoX) Trees!

int drawTree(/* .. */) { 0]
if (order == 0) {
return 0; numLines
}

int numLines = 0;

int = drawPolarLine(/* .. */);
numLines++;

numLines += drawTree(/* .. */);
numLines += drawTree(/* .. */);

return numLines;

FYoX | Trees!

int drawTree(/* .. */) { 1
if (order == 0) {
return 0; numLines
}

int numLines = 0;

int = drawPolarLine(/* .. */);
numLines++;

numLines += drawTree(/* .. */);
numLines += drawTree(/* .. */);

return numLines;

FYoX | Trees!

int drawTree(/* .. */) { 1
if (order == 0) {
return 0; numLines
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

numLines += drawTree(/* .. */);

return numLines;

' YoX) Trees!

int drawTree(/* .. */) { 1
if (order == 0) {
return 0; numLines

}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

numLines + drawTree(/* .. */);
numLines +=[~dmﬁreeH—]... -

return numLines;

' YoX) Trees!

{pddeanTcaal Lo LN C 4

int drawTree(/* .. */) {
if (order == 0) {
return 0;
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

numLines += drawTree(/* .. */);
numLines += drawTree(/* .. */);

return numLines;

FYoX | Trees!

'.l.'* deiT ool [AN o i |

in -
if (order == 0) {

}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

numLines += drawTree(/* .. */);
numLines += drawTree(/* .. */);

return numLines;

' YoX) Trees!

gl Teaal Lo AN 4

int drawTree(/* .. */) {
if (order == 0) {
return 0;
}

int numLines = 0;
; errt—=drawPolarLine(/* .. */);

numLines++;

numLines += drawTree(/* .. */);
numLines += drawTree(/* .. */);

return numLines;

FYoX | Trees!

{pddeanTcaal Lo LN C 4

int drawTree(/* .. */) { 0]
if (order == 0) {
return 0; numLines
}

int numLines = 0;
; errt—=drawPolarLine(/* .. */);
numLines++;

numLines += drawTree(/* .. */);
numLines += drawTree(/* .. */);

return numLines;

FYoX | Trees!

'.l.'* deoiiTeaal [LN L i |

int drawTree(/* .. */) { 0]
if (order == 0) {
return 0; numLines
}

lGPoint endpoint = drawPolarLine(/* .. */);]

numLines += drawTree(/* .. */);
numLines += drawTree(/* .. */);

return numLines;

' YoX) Trees!

'.l.'* deoiiTeaal [LN L i |

int drawTree(/* .. */) { 0]
if (order == 0) {
return 0; numLines
}

lGPoint endpoint = drawPolarLine(/* .. */);]

numLines += drawTree(/* .. */);
numLines += drawTree(/* .. */);

return numLines;

' YoX) Trees!

{pddeanTcaal Lo LN C 4

int drawTree(/* .. */) { 0]
if (order == 0) {
return 0; numLines
}

int numLines = 0;

wnt = drawPolarLine(/* .. */);
numLines++;

numLines += drawTree(/* .. */);
numLines += drawTree(/* .. */);

return numLines;

FYoX | Trees!

{pddeanTcaal Lo LN C 4

int drawTree(/* .. */) { 1
if (order == 0) {
return 0; numLines
}

int numLines = 0;

wnt = drawPolarLine(/* .. */);
numLines++;

numLines += drawTree(/* .. */);
numLines += drawTree(/* .. */);

return numLines;

FYoX | Trees!

'.l.'* deiT ool [AN o i |

int drawTree(/* .. */) { 1
if (order == 0) {
return 0; numLines
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

numLines += drawTree(/* .. */);

return numLines;

' YoX) Trees!

'.l.'* deiT ool [AN o i |

int drawTree(/* .. */) { 1
if (order == 0) {
return 0; numLines
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

numLines +4 drawTree(/* .. */);l
numLines += - -

return numLines;

' YoX) Trees!

'.l.'* deiT ool [AN o i |

int drawTree(/* .. */) { 1
if (order == 0) {
return 0; numLines
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

numLines +

drawTree(/* .. */);
numLines += -

return numLines;

This call draws a
recursive tree.

'.l.'* deiT ool [AN o i |

int drawTree(/* .. */) { 1
if (order == 0) {
return 0; numLines
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

numLines +

drawTree(/* .. */);
numLines += -

return numLines;

This call draws a
recursive tree.

'.l.'* deiT ool [AN o i |

int drawTree(/* .. */) { 1
if (order == 0) {
return 0; numLines
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

numLines +

drawTree(/* .. */);
numLines += -

return numLines;

This call draws a
recursive tree.

It then returns
the number of
lines drawn.

'.l.'* deiT ool [AN o i |

int drawTree(/* .. */) { 1
if (order == 0) {
return 0; numLines
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

numLines += drawTree(/* .. */);

return numLines;

Yor Trees!)

'.l.'* deiT ool [AN o i |

int drawTree(/* .. */) { 4
if (order == 0) {
return 0; numLines
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

numLines += drawTree(/* .. */);

return numLines;

Yor Trees!)

'.l.'* deiT ool [AN o i |

int drawTree(/* .. */) { 4
if (order == 0) {
return 0; numLines
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

numLines += drawTree(/* .. */);

return numLines;

FYoX | Trees!

'.l.'* de T ool o AN o i |

int drawTree(/* .. */) { 4
if (order == 0) {
return 0; numLines
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

numLines += drawTree(/* .. */);

return numLines;

FYoX | Trees!

'.l.'* de T ool o AN o i |

int drawTree(/* .. */) { V4
if (order == 0) {
return 0; numLines
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

numLines += drawTree(/* .. */);

return numLines;

FYoX | Trees!

}

'.Lll deanTeaal Ll S W

int drawTree(/* .. */) {

if (order == 0) {
return 0;
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

numLines += drawTree(/* .. */);
numLines += drawTree(/* .. */);

[return numLines;]

Yo | Trees!

numLines

int drawTree(/* .. */) { 1
if (order == 0) {
return 0; numLines
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

numLines +:l drawTree(/* .. */); l 7
numLines += - -

return numLines;

FYoX | Trees!

int drawTree(/* .. */) { 1
if (order == 0) {
return 0; numLines
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

numLines += drawTree(/* .. */);

return numLines;

FYoX | Trees!

int drawTree(/* .. */) { 8
if (order == 0) {
return 0; numLines
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

numLines += drawTree(/* .. */);

return numLines;

FYoX | Trees!

int drawTree(/* .. */) { 8
if (order == 0) {
return 0; numLines
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

numLines += drawTree(/* .. */);

return numLines;

FYoK) Trees!

int drawTree(/* .. */) { 8
if (order == 0) {
return 0; numLines
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

numLines += drawTree(/* .. */);

return numLines;

FYoK) Trees!

int drawTree(/* .. */) { 8
if (order == 0) {
return 0; numLines
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

numLines += drawTree(/* .. */); 7

return numLines;

FYoK) Trees!

int drawTree(/* .. */) { 15
if (order == 0) {
return 0; numLines
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

numLines += drawTree(/* .. */); 7

return numLines;

FYoK) Trees!

int drawTree(/* .. */) { 15
if (order == 0) {
return 0; numLines
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

numLines += drawTree(/* .. */);
numLines += drawTree(/* .. */);

[return numLines;]

}

FYoK) Trees!

Summary From Today

» Selt-similar figures exist in many places, and
recursion is a great way to draw them.

 When drawing a selt-similar figure, identify
what aspects of the figure are different at
different scales.

* Assigning an order to a self-similar figure is a
great way to make a base case.

 When writing a recursive function that returns
a value, make sure you use the result of each
recursive call. Otherwise, important data can
get lost.

Your Action Items

* Read Chapter 8.

 There’s a ton of goodies in there! It’ll help
you solidify your understanding of recursion
and recursive techniques.

« Keep Working On Assignment 2.

 Need help? Stop by the LalR or post on
EdStem! That’s what we’re here for.

Next Time

* Recursive Enumeration
* Finding all objects of a given type.
 EFnumerating Subsets

* A classic combinatorial problem!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122

