Thinking Recursively

Part 1



Outline for Today

* Self-Similarity

 Recursive patterns are everywhere!
* Recursive Trees

* Elegant structures from simple code.
 Information Flow

« How to send information around in
recursion.



Self-Similarity



An object is self-similar if it contains a smaller copy of itself.




An object is self-similar if it contains a smaller copy of itself.



Drawing Self-Similar Shapes















What differentiates the smaller
tree from the bigger one?




What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.







What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
2. It’s at a different size.




What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.
3. It has a different orientation.

2. It’s at a different size.




What differentiates the smaller
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1. It’s at a different position.
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3. It has a different orientation.
4. It has a different order.




What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.

2. It’s at a different size.

3. It has a different orientation.
4. It has a different order.

Self-similar structures are

often described in terms of

some parameter called the
order.




An order-0 tree.

What differentiates the smaller
tree from the bigger one?

) . . Self-similar structures are
1. It’s at a different position. : :
2 It’s at a different size. often described in terms of

3. It has a different orientation. some parameter called the
4. 1t has a different order. order.




An order-1 tree.

What differentiates the smaller
tree from the bigger one?

) . . Self-similar structures are
1. It’s at a different position. : :
2 It’s at a different size. often described in terms of

3. It has a different orientation. some parameter called the
4. 1t has a different order. order.




What differentiates the smaller
tree from the bigger one?

An order-2 tree.

1. It’s at a different position.

2. It’s at a different size.

3. It has a different orientation.
4. It has a different order.

Self-similar structures are

often described in terms of

some parameter called the
order.




What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.

2. It’s at a different size.

3. It has a different orientation.
4. It has a different order.

An order-3 tree.

Self-similar structures are

often described in terms of

some parameter called the
order.




What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.

2. It’s at a different size.

3. It has a different orientation.
4. It has a different order.

An order-4 tree.

Self-similar structures are

often described in terms of

some parameter called the
order.




What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.

2. It’s at a different size.

3. It has a different orientation.
4. It has a different order.

Self-similar structures are

often described in terms of

some parameter called the
order.




What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.

2. It’s at a different size.

3. It has a different orientation.
4. It has a different order.

An order-3 tree.

Self-similar structures are

often described in terms of

some parameter called the
order.




An order-0 tree is nothing at all.

An order-n tree is a line with two
smaller order-(n-1) trees starting
at the end of that line.

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position.

2. It’s at a different size.

3. It has a different orientation.
4. It has a different order.

An order-3 tree.

Self-similar structures are

often described in terms of

some parameter called the
order.




An order-3 tree.
An order-0 tree is nothing at all.

An order-n tree is a line with two
smaller order-(n-1) trees starting
at the end of that line.
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What differentiates the smaller
tree from the bigger one?

Self-similar structures are

often described in terms of

some parameter called the
order.

1. It’s at a different position.

2. It’s at a different size.

3. It has a different orientation.
4. It has a different order.




To Summarize



We drew this
tree recursively




Each recursive call just

draws one branch. The

sum total of all the

recursive calls draws

the whole tree.




An Amazing Website

http://recursivedrawing.com/


http://recursivedrawing.com/

Time-Out for Announcements!



Assignment 2

» Assignment 2 is due on Friday.

 If you're following our suggested timetable, you
should aim to wrap up Rosetta Stone tonight and
start working on Rising Tides.

« Have questions?
Visit into the LalR!
Email your section leader!

Ask on EdStem!
Visit Keith’s or Neel’s office hours!



Submitting Your Work

 Each assignment has a “Submission
Instructions” section at the end with
information about what files to submit.

 Please submit all the files listed
there. Otherwise, we can’t grade all the
work you’ve done.

e Thanks!



Onward and Forward!



A Quick, Relevant Tangent



Reasoning By Analogy

 What’s wrong with this code?
const double PI = 3.14159265358979;

double areaOfCircle(double radius) {
return PI * radius * radius;
}

int main() {
double radius = 1.61;
areaOfCircle(radius);

return 0;

Answer online at
https://pollev.com/cs106bwin23



https://pollev.com/cs106bwin23

Reasoning By Analogy

 What’s wrong with this code?
const double PI = 3.14159265358979;

double areaOfCircle(double radius) {
return PI * radius * radius;
}

int main() {
double radius = 1.61;
areaOfCircle(radius);

return 0;



Reasoning By Analogy

areaOfCircle(radius);

It’s odd to call a function
that returns a value
and then not use that value.

If you don’t use a function’s
return value, it’s likely a bug!




Back to Recursion...



A Practical Application





http://www.pbs.org/wgbh/nova/physics/hunting-hidden-dimension.html

How many lines make up each tree?



How many
lines are in
this tree?




We use one line for
the trunk




.. Some number of
lines to draw this

tree, ...
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.. and some

number of lines to
draw this tree.
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int drawTree(/* .. */) {
if (order == 0) {
return 0;
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

drawTree(/* .. */);
drawTree(/* .. */);

return numLines;

FYoX | Trees!




int numLines
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

drawTree(/* .
drawTree(/* .

:0;

- *[);
- *[);

return numLines;
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Trees!




int drawTree(/* .. */) {
if (order == 0) {
return 0;
}

int numLines = 0;
: =/ drawPolarLine(/* .. */);

numLines++;

drawTree(/* .. */);
drawTree(/* .. */);

return numLines;

FYoX | Trees!




int drawTree(/* .. */) { 0
if (order == 0) {
return 0; numLines

}

int numLines = 0;
: =/ drawPolarLine(/* .. */);

numLines++;

drawTree(/* .. */);
drawTree(/* .. */);

return numLines;

Yo Trees!




int drawTree(/* .. */) { 0]
if (order == 0) {
return 0; numLines

}

lGPoint endpoint = drawPolarLine(/* .. */)J

TUMC CITeS T T,

drawTree(/* .. */);
drawTree(/* .. */);

return numLines;

FYoX | Trees!




int drawTree(/* .. */) { 0]
if (order == 0) {
return 0; numLines

}

lGPoint endpoint = drawPolarLine(/* .. */)J

TUMC CITeS T T,

drawTree(/* .. */);
drawTree(/* .. */);

return numLines;

FYoX | Trees!




int drawTree(/* .. */) { 0]
if (order == 0) {
return 0; numLines

}

int numLines = 0;

int = drawPolarLine(/* .. */);
numLines++;

drawTree(/* .. */);
drawTree(/* .. */);

return numLines;

' Yor Trees! )




int drawTree(/* .. */) { 1
if (order == 0) {
return 0; numLines

}

int numLines = 0;

int = drawPolarLine(/* .. */);
numLines++;

drawTree(/* .. */);
drawTree(/* .. */);

return numLines;

' Yor Trees! )




int drawTree(/* .. */) { 1
if (order == 0) {
return 0; numLines
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

drawTree(/* .. */);

(XYY ]

return numLines;

Yor Trees! )
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int drawTree(/* .. */) {
if (order == 0) {
return 0;
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

drawTree(/* .. */);
drawTree(/* .. */);

return numLines;

Yor Trees! )
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in =
if (order == 0) {

}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

drawTree(/* .. */);
drawTree(/* .. */);

return numLines;

FYoX | Trees!
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int drawTree(/* .. */) {
if (order == 0) {
return 0;
}

int numLines = 0;

rawPolarLine(/* .. */);
numLines++;

drawTree(/* .. */);
drawTree(/* .. */);

return numLines;

' Yor Trees! )
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int drawTree(/* .. */) { 0]
if (order == 0) {
return 0; numLines
}

int numLines = 0;
' ! rawPolarLine(/* .. */);
numLines++;

drawTree(/* .. */);
drawTree(/* .. */);

return numLines;

FYoK ) Trees! )
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int drawTree(/* .. */) { 0]
if (order == 0) {
return 0; numLines
}
l int numLines = 0; I«
' ! rawPolarLine(/* .-

numLines++;

drawTree(/* .. */);
drawTree(/* .. */);

return numLines;
1}— It’s reasonable to guess that this

line is the problem because it
looks like it resets numLines to
zero at each call.

CYOX | Trees!

But that’s not actually the issue.
Remember - every recursive call
gets its own copies of all local
variables.
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int drawTree(/* .. */) { 0]
if (order == 0) {
return 0; numLines
}

l GPoint endpoint = drawPolarLine(/* .. */)J

drawTree(/* .. */);
drawTree(/* .. */);

return numLines;

FYoX | Trees!
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int drawTree(/* .. */) { 0]
if (order == 0) {
return 0; numLines
}

l GPoint endpoint = drawPolarLine(/* .. */)J

drawTree(/* .. */);
drawTree(/* .. */);

return numLines;

FYoX | Trees!
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int drawTree(/* .. */) { 0]
if (order == 0) {
return 0; numLines
}

int numLines = 0;

int = drawPolarLine(/* .. */);
numLines++;

drawTree(/* .. */);
drawTree(/* .. */);

return numLines;

Yo Trees! )
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int drawTree(/* .. */) { 1
if (order == 0) {
return 0; numLines
}

int numLines = 0;

int = drawPolarLine(/* .. */);
numLines++;

drawTree(/* .. */);
drawTree(/* .. */);

return numLines;

Yo Trees! )




}

if (order

}

MI\ L

int drawTree(/* .. */) {

== 0) {

return 0;

int numLines = 0;

int = drawPolarLine(/* .. */);
numLines++;

1

numLines

drawTree(/* .. */);
drawTree(/* .. */);

return numLines;
-1.}— It’s also reasonable to guess that the

00

Trees!

error is that this isn’t incrementing the
copy of numLines inside of the top-level
call.

While it’s true that this doesn’t increment
the top-level copy of numLines, that isn’t an
error per se. This function says it will
return the number of lines drawn, not

update a global total somewhere.
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int drawTree(/* .. */) { 1
if (order == 0) {
return 0; numLines
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

drawTree(/* .. */);

(XYY ]

return numLines;

"Yor Trees! )
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int drawTree(/* .. */) { 1
if (order == 0) {
return 0; numLines
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

drawTree(/* .. */);

(XYY ]

return numLines;

FYoX | Trees!
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if (order == 0) {
return 0;
}

int numLines = 0;

numLines++;

int drawTree(/* .. */) {

GPoint endpoint = drawPolarLine(/* .. */);

return numLines;

drawTree(/* .. */);

3

numLines

' YoX ) Trees!

This function returns an integer, but we
didn’t do anything with that integer! It
would be like writing this line of code:

sqrt(137);

This computes a square root, but doesn’t
store it anywhere. Oops! Our total is now
wrong.
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int drawTree(/* .. */) { 1
if (order == 0) {
return 0; numLines
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

drawTree(/* .. */);

(XYY ]

return numLines;

FYoX | Trees!
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int drawTree(/* .. */) { 1
if (order == 0) {
return 0; numLines
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

|drawTree(/* : */);l

return numLines;

FYoX | Trees!
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int drawTree(/* .. */) { 1
if (order == 0) {
return 0; numLines
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

|drawTree(/* : */);l

return numLines;

FYoX | Trees!
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int drawTree(/* .. */) {
if (order == 0) {
return 0;
}

int numLines = 0;

numLines++;

GPoint endpoint = drawPolarLine(/* .. */);

|drawTree(/* : */);l<—

return numLines;

FYoX | Trees!

numLines

Oops - we didn’t do
anything with the
return value.
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int drawTree(/* .. */) { 1
if (order == 0) {
return 0; numLines
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

drawTree(/* .. */);
drawTree(/* .. */);

[return numLines;]

}

FYoX | Trees!




int drawTree(/* .. */) { 1
if (order == 0) {
return 0; numLines
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

drawTree(/* .. */);

(XYY ]

return numLines;

FYoX | Trees!




int drawTree(/* .. */) { 1
if (order == 0) {
return 0O; numLines

}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

drawTree(/* .. */); |€—

ooe F)

return numLines;

Oops - we didn’t do
"Yox | Trees! anything with the
return value.




int drawTree(/* .. */) { 1
if (order == 0) {
return 0; numLines
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

|drawTree(/* : */);

return numLines;

FYoX | Trees!




int drawTree(/* .. */) { 1
if (order == 0) {
return 0; numLines
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

|drawTree(/* : */);

return numLines;

FYoX | Trees!




if (order ==
return 0
}

int numLines

numLines++;

int drawTree(/* .. */) {

0) {

]
3

:0;

GPoint endpoint = drawPolarLine(/* .. */);

|drawTree(/* : */);

numLines

return numLines;

0O @

Trees!

Oops - we didn’t do
anything with the
return value.




int drawTree(/* .. */) { 1
if (order == 0) {
return 0; numLines

}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

drawTree(/* .. */);
drawTree(/* .. */);

[return numLines;]

}

FYoX | Trees!




General Advice

 If a function returns a value, you should,
in general, do something with that value.

 Otherwise, the function did all this hard work
for you, and you just dropped it on the floor!

» If you're writing a recursive function that
returns a value, you should explicitly do
something with the value returned by
each recursive call.

* Otherwise, your recursive call is trying to tell
you something, and you’'re ignoring it!



The Correction



int drawTree(/* .. */) {
if (order == 0) {
return 0;
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

numLines += drawTree(/* .. */);
numLines += drawTree(/* .. */);

return numLines;

FYoX | Trees!




int -
if (order == 0) {

}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

numLines += drawTree(/* .. */);
numLines += drawTree(/* .. */);

return numLines;

' YoX ) Trees!




int drawTree(/* .. */) {
if (order == 0) {
return 0;
}

int numLines = 0;

rawPolarLine(/* .. */);
numLines++;

numLines += drawTree(/* .. */);
numLines += drawTree(/* .. */);

return numLines;

FYoX | Trees!




int drawTree(/* .. */) { 0]
if (order == 0) {
return 0; numLines
}

int numLines = 0;

rawPolarLine(/* .. */);
numLines++;

numLines += drawTree(/* .. */);
numLines += drawTree(/* .. */);

return numLines;

FYoX | Trees!




int drawTree(/* .. */) { 0]
if (order == 0) {
return 0; numLines
}

lGPoint endpoint = drawPolarLine(/* .. */)J

TUMC CITeS T T,

numLines += drawTree(/* .. */);
numLines += drawTree(/* .. */);

return numLines;

' YoX ) Trees!




int drawTree(/* .. */) { 0]
if (order == 0) {
return 0; numLines
}

lGPoint endpoint = drawPolarLine(/* .. */)J

TUMC CITeS T T,

numLines += drawTree(/* .. */);
numLines += drawTree(/* .. */);

return numLines;

' YoX ) Trees!




int drawTree(/* .. */) { 0]
if (order == 0) {
return 0; numLines
}

int numLines = 0;

int = drawPolarLine(/* .. */);
numLines++;

numLines += drawTree(/* .. */);
numLines += drawTree(/* .. */);

return numLines;

FYoX | Trees!




int drawTree(/* .. */) { 1
if (order == 0) {
return 0; numLines
}

int numLines = 0;

int = drawPolarLine(/* .. */);
numLines++;

numLines += drawTree(/* .. */);
numLines += drawTree(/* .. */);

return numLines;

FYoX | Trees!




int drawTree(/* .. */) { 1
if (order == 0) {
return 0; numLines
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

numLines += drawTree(/* .. */);

return numLines;

' YoX ) Trees!




int drawTree(/* .. */) { 1
if (order == 0) {
return 0; numLines

}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

numLines + drawTree(/* .. */);
numLines +=[~dmﬁreeH—]... -

return numLines;

' YoX ) Trees!
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int drawTree(/* .. */) {
if (order == 0) {
return 0;
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

numLines += drawTree(/* .. */);
numLines += drawTree(/* .. */);

return numLines;

FYoX | Trees!
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in -
if (order == 0) {

}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

numLines += drawTree(/* .. */);
numLines += drawTree(/* .. */);

return numLines;

' YoX ) Trees!
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int drawTree(/* .. */) {
if (order == 0) {
return 0;
}

int numLines = 0;
; errt—=drawPolarLine(/* .. */);

numLines++;

numLines += drawTree(/* .. */);
numLines += drawTree(/* .. */);

return numLines;

FYoX | Trees!
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int drawTree(/* .. */) { 0]
if (order == 0) {
return 0; numLines
}

int numLines = 0;
; errt—=drawPolarLine(/* .. */);
numLines++;

numLines += drawTree(/* .. */);
numLines += drawTree(/* .. */);

return numLines;

FYoX | Trees!
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int drawTree(/* .. */) { 0]
if (order == 0) {
return 0; numLines
}

lGPoint endpoint = drawPolarLine(/* .. */); ]

numLines += drawTree(/* .. */);
numLines += drawTree(/* .. */);

return numLines;

' YoX ) Trees!
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int drawTree(/* .. */) { 0]
if (order == 0) {
return 0; numLines
}

lGPoint endpoint = drawPolarLine(/* .. */); ]

numLines += drawTree(/* .. */);
numLines += drawTree(/* .. */);

return numLines;

' YoX ) Trees!




{pddeanTcaal Lo LN C 4

int drawTree(/* .. */) { 0]
if (order == 0) {
return 0; numLines
}

int numLines = 0;

wnt = drawPolarLine(/* .. */);
numLines++;

numLines += drawTree(/* .. */);
numLines += drawTree(/* .. */);

return numLines;

FYoX | Trees!
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int drawTree(/* .. */) { 1
if (order == 0) {
return 0; numLines
}

int numLines = 0;

wnt = drawPolarLine(/* .. */);
numLines++;

numLines += drawTree(/* .. */);
numLines += drawTree(/* .. */);

return numLines;

FYoX | Trees!
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int drawTree(/* .. */) { 1
if (order == 0) {
return 0; numLines
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

numLines += drawTree(/* .. */);

return numLines;

' YoX ) Trees!
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int drawTree(/* .. */) { 1
if (order == 0) {
return 0; numLines
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

numLines +4 drawTree(/* .. */);l
numLines += - -

return numLines;

' YoX ) Trees!
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int drawTree(/* .. */) { 1
if (order == 0) {
return 0; numLines
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

numLines +

drawTree(/* .. */);
numLines += -

return numLines;

This call draws a
recursive tree.
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int drawTree(/* .. */) { 1
if (order == 0) {
return 0; numLines
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

numLines +

drawTree(/* .. */);
numLines += -

return numLines;

This call draws a
recursive tree.
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int drawTree(/* .. */) { 1
if (order == 0) {
return 0; numLines
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

numLines +

drawTree(/* .. */);
numLines += -

return numLines;

This call draws a
recursive tree.

It then returns
the number of
lines drawn.
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int drawTree(/* .. */) { 1
if (order == 0) {
return 0; numLines
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

numLines += drawTree(/* .. */);

return numLines;

Yor Trees! )
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int drawTree(/* .. */) { 4
if (order == 0) {
return 0; numLines
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

numLines += drawTree(/* .. */);

return numLines;

Yor Trees! )
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int drawTree(/* .. */) { 4
if (order == 0) {
return 0; numLines
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

numLines += drawTree(/* .. */);

return numLines;

FYoX | Trees!
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int drawTree(/* .. */) { 4
if (order == 0) {
return 0; numLines
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

numLines += drawTree(/* .. */);

return numLines;

FYoX | Trees!
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int drawTree(/* .. */) { V4
if (order == 0) {
return 0; numLines
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

numLines += drawTree(/* .. */);

return numLines;
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int drawTree(/* .. */) {

if (order == 0) {
return 0;
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

numLines += drawTree(/* .. */);
numLines += drawTree(/* .. */);

[return numLines;]
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int drawTree(/* .. */) { 1
if (order == 0) {
return 0; numLines
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

numLines +:l drawTree(/* .. */); l 7
numLines += - -

return numLines;
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int drawTree(/* .. */) { 1
if (order == 0) {
return 0; numLines
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

numLines += drawTree(/* .. */);

return numLines;
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int drawTree(/* .. */) { 8
if (order == 0) {
return 0; numLines
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

numLines += drawTree(/* .. */);

return numLines;
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int drawTree(/* .. */) { 8
if (order == 0) {
return 0; numLines
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

numLines += drawTree(/* .. */);

return numLines;
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int drawTree(/* .. */) { 8
if (order == 0) {
return 0; numLines
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

numLines += drawTree(/* .. */);

return numLines;
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int drawTree(/* .. */) { 8
if (order == 0) {
return 0; numLines
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

numLines += drawTree(/* .. */); 7

return numLines;
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int drawTree(/* .. */) { 15
if (order == 0) {
return 0; numLines
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

numLines += drawTree(/* .. */); 7

return numLines;
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int drawTree(/* .. */) { 15
if (order == 0) {
return 0; numLines
}

int numLines = 0;
GPoint endpoint = drawPolarLine(/* .. */);
numLines++;

numLines += drawTree(/* .. */);
numLines += drawTree(/* .. */);

[return numLines;]

}

FYoK ) Trees!




Summary From Today

» Selt-similar figures exist in many places, and
recursion is a great way to draw them.

 When drawing a selt-similar figure, identify
what aspects of the figure are different at
different scales.

* Assigning an order to a self-similar figure is a
great way to make a base case.

 When writing a recursive function that returns
a value, make sure you use the result of each
recursive call. Otherwise, important data can
get lost.



Your Action Items

* Read Chapter 8.

 There’s a ton of goodies in there! It’ll help
you solidify your understanding of recursion
and recursive techniques.

« Keep Working On Assignment 2.

 Need help? Stop by the LalR or post on
EdStem! That’s what we’re here for.



Next Time

* Recursive Enumeration
* Finding all objects of a given type.
 EFnumerating Subsets

* A classic combinatorial problem!
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